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Untargeted metabolomics of environmental samples routinely de-
tects thousands of small molecules, the vast majority of which cannot
be identified. Meta-mass shift chemical (MeMSChem) profiling was
developed to identify mass differences between related molecules
using molecular networks. This approach illuminates metabolome-
wide relationships between molecules and the putative chemical
groups that differentiate them (e.g., H2, CH2, COCH2). MeMSChem
profiling was used to analyze a publicly available metabolomic
dataset of coral, algal, and fungal mat holobionts (i.e., the host
and its associated microbes and viruses) sampled from some of
Earth’s most remote and pristine coral reefs. Each type of holo-
biont had distinct mass shift profiles, even when the analysis was
restricted to molecules found in all samples. This result suggests
that holobionts modify the same molecules in different ways and
offers insights into the generation of molecular diversity. Three
genera of stony corals had distinct patterns of molecular relatedness
despite their high degree of taxonomic relatedness. MeMSChem
profiles also partially differentiated between individuals, suggest-
ing that every coral reef holobiont is a potential source of novel
chemical diversity.

untargeted metabolomics | molecular networking | small molecules |
coral reefs

Untargeted tandem mass spectrometry is a powerful tool for
wide-scale analysis of small molecules. The resulting metab-

olomes are potential treasure troves of previously unidentified
molecules and chemistries, but a major problem in realizing this
potential is that most detected molecules cannot be identified (1–
5). One possible solution is to use spectral fragmentation similarity
to identify relatives of known molecules to generate annotations
(6–8). These approaches have rapidly expanded reference data-
bases, but remain inherently limited by the number of known
molecules. Therefore, there is a need for analyses that do not rely
upon molecular reference libraries (9).
The online platform Global Natural Products Social Molecu-

lar Networking [GNPS (5)] uses spectral fragmentation patterns
to compare tens of thousands of molecular features and create
networks of structurally similar molecules. Here we expand the
analysis of GNPS networks to identify chemical differences be-
tween related molecules (Fig. 1). This approach is called meta-
mass shift chemical (MeMSChem) profiling, and uses the mass
differences (or mass shifts) between related molecules to identify
and annotate known chemical groups such as H2, CH2, COCH2,
and so forth. Annotating molecules based on their mass shifts
facilitates correlations between metabolomics, biochemistry, and
genomics, which could help pinpoint sites of molecular modifi-
cations resulting from known and unknown enzymatic activities.
Coral reefs are noted sources of commercially useful com-

pounds (10). Reef holobionts [e.g., corals, sponges, and algae

with their associated viral and microbial communities (11)] have
distinct metabolomes, with a high degree of within-holobiont
similarity (12, 13). The positive relationship between taxonomic
and molecular diversity is evident at the ecosystem level, but
mechanisms explaining how high molecular diversity is generated
remain missing. To address this question, MeMSChem profiling
was applied to an existing dataset (12) composed of seven coral
reef holobiont types collected in the Line Islands, which are some
of the most remote and pristine coral reefs in the world (14, 15).
MeMSChem profiling showed that molecular mass shift patterns
differ significantly between holobionts, offering insights into
why high molecular diversity is found on coral reefs.

Results
Identifying Redundant Mass Shifts in Metabolomes of Coral Reef
Holobionts. The dataset used as the basis for creating MeMSChem
profiles was previously published in ref. 12 and can be found on the
Mass spectrometry Interactive Virtual Environment (MassIVE) at
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp with accession
no. MSV000078598. This dataset was derived from an LC-MS/MS
analysis of three genera of scleractinian coral (Montipora spp.,
Pocillopora spp., and Porites spp.), two coralline algae [crustose

Significance

Coral reef taxa produce a diverse array of molecules, some of
which are important pharmaceuticals. To better understand
how molecular diversity is generated on coral reefs, tandem
mass spectrometry datasets of coral metabolomes were ana-
lyzed using a novel approach called meta-mass shift chemical
(MeMSChem) profiling. MeMSChem profiling uses the mass
differences between molecules in molecular networks to de-
termine how molecules are related. Interestingly, the same
molecules gain and lose chemical groups in different ways
depending on the taxa it came from, offering a partial expla-
nation for high molecular diversity on coral reefs.

Author contributions: A.C.H. and F.L.R. designed research; A.C.H., D.P., R.A.Q., M.J.A.V.,
and F.L.R. performed research; I.P., F.I.A., G.J.W., B.A.B., T.A., and P.C.D. contributed new
reagents/analytic tools; A.C.H., D.P., R.A.Q., I.P., F.I.A., E.R., G.J.W., and B.A.B. analyzed
data; and A.C.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This is an open access article distributed under the PNAS license.

Data deposition: The molecular spectra used here are available on the Mass Spectrometry
Interactive Virtual Environment (MassIVE) data repository (accession no. MSV000078598).
1To whom correspondence should be addressed. Email: aaron.hartmann@gmail.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1710248114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1710248114 PNAS | October 31, 2017 | vol. 114 | no. 44 | 11685–11690

BI
O
CH

EM
IS
TR

Y

D
ow

nl
oa

de
d 

at
 N

O
A

A
 C

E
N

T
R

A
L 

LI
B

R
A

R
Y

 o
n 

M
ar

ch
 6

, 2
02

0 

https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1710248114&domain=pdf
http://www.pnas.org/site/aboutpnas/licenses.xhtml
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=9365dda0c34e43c8b7632527cf9b06b9
mailto:aaron.hartmann@gmail.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1710248114


coralline algae (CCA) and Halimeda sp.], two noncalcifying
algae (macroalgae and turf algae), and a fungal mat.
The online platform GNPS [gnps.ucsd.edu/ProteoSAFe/static/

gnps-splash.jsp (5); Fig. S1] was used to cluster identical MS/MS
spectra into nodes and identify the degree to which each node
was structurally similar (i.e., related) to other nodes (henceforth
referred to as “molecular features”) based on a cosine score of
spectral similarity. All pairs of molecular features receiving a
cosine score above a threshold of 0.6 were considered to be re-
lated and connected in the network (see SI Materials and Methods
for more details regarding the cosine score threshold). Each mass
shift between network connections was then mined for multiple
(i.e., redundant) occurrences (Fig. 1B). When the mass shifts of
five or more molecular pairs differed by <m/z 0.001, the mass shift
was counted. All molecular features comprising the pairs with this
mass shift were assigned to a bin (Fig. 1 C–E; see SI Materials and
Methods for more details).

MeMSChem profiling identified 62 mass shifts that passed the
filter of five or more mass shifts within m/z 0.001 (Table S1).
Among these mass shifts, 10 were annotated to known adducts
and artifacts and were removed before further analyses (Tables
S1 and S2). The remaining mass shifts were annotated to known
chemical groups involving hydrogen, carbon, and oxygen where
possible, leading to the annotation of 13 of the 62 mass shifts
identified (Table 1 and Table S1). This represents a conservative
list of annotations, and the additional mass shifts identified here
may be annotatable in future investigations.
Mass shifts of 0 were abundant in the networks and may re-

present isomers. These mass shifts were removed due to the
likelihood that two isomers were merged into a single molecular
feature or that the same molecular feature was split into two
molecules during networking, due to the high degree of spectral
similarity or difference in the number of observable fragments,
respectively. An approach using retention time differences or

Fig. 1. Data processing and generation based on a simplified molecular network and two redundant mass shifts. (A) GNPS used MS/MS fragmentation
spectra to elucidate molecular similarities and network similar molecules (i.e., related molecules). (B) Redundant mass shifts between related molecules were
identified and annotated to known chemical groups when possible. Two annotated mass shifts are shown here, m/z 2.016 in blue with dashed lines and m/z
27.996 in orange with solid lines. (C) Molecular features that differed by a redundant mass shift were quantified based on MS. (D–F) Data were generated for (D)
the number of times each redundant mass shift was observed across all networks, (E) the summed abundances of all molecules exhibiting each redundant mass
shift, and (F) the sum of the differences in abundances between the more massive and less massive molecules for all pairs of molecules connected by a mass shift.

Table 1. All mass shifts for which the mass difference between network pairs was within the
error of known chemical groups

Mass shifts are shown separately based upon whether they putatively involve oxygen (blue) or only carbon
and hydrogen (red). Reported are the mass shifts observed in the real data (Obs. mass), the calculated mass
shift of the known mass shift (Calc. mass), the percentage of all mass shifts representing that mass shift (% mass
shift), and the putative element or group composition.
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chiral separation columns should be employed to separate iso-
mers in future applications of MeMSChem profiling.

Quantifying Mass Shifts in Holobionts. MS/MS-based molecular
features associated with redundant mass shifts were quantified
from the MS scan of the parent molecule using Optimus software
(https://github.com/MolecularCartography/Optimus; Fig. 1C). A
molecular feature filter was applied to remove features that were
not detected in all samples. Consequently, only the features present
in all samples were quantified. This filter allowed us to determine
whether holobionts exhibited different mass shifts associated with
the same molecules (cf. different mass shifts associated with mol-
ecules that are only found in that holobiont; Fig. 1 E and F).
Three forms of metabolome-wide data were generated for

each sample (Fig. 1 A–C). First, all instances where a redundant
mass shift was observed in the network were tabulated for each
sample. These “counts” data provided a metric of the commonness
and rarity of each mass shift in each sample (Fig. 1D). Second, the
abundance of every molecular feature was summed by mass shift
regardless of whether that feature was the higher or lower mass
feature in a network pair. These “summed abundances” data provided

a metric for the overall occurrence of each mass shift throughout each
sample (Fig. 1E; see SI Materials and Methods for equations). Third,
for each network pair, the difference in abundance between the more
and less massive feature was calculated, and then these values were
summed by mass shift for each sample (Fig. 1F; see SI Materials and
Methods for equations). These “differences in abundances” data re-
flected whether, metabolome-wide, molecules were more likely to gain
or lose a given mass, potentially reflecting active interconversion or
branching of largely shared biosynthetic pathways. All resultant data
are provided in Dataset S1. Among the redundant mass shifts, 7 of the
10 most common mass shifts were putatively annotated to known
chemical groups, constituting nearly 50% of the network pairs isolated
from the networks. These mass shifts included m/z 2.016, 14.016,
28.032, 56.064, 26.016, 18.010, and 12.000, which were putatively an-
notated as H2, CH2, C2H4, C4H8, C2H2, H2O, and C, respectively.

Examining Known Mass Shifts Associated with Library-Identified
Molecular Features. Instances in which known mass shifts were as-
sociated with identified molecules provided conformational evi-
dence that mass shifts were correctly annotated. Four examples are
highlighted in Fig. 2B, as follows. (i) A feature identified as
phenanthro-furanone with a mass shift of m/z 18.014 (H2O; Fig.
2B, example 1 and Fig. S2). (ii) A subnetwork with three forms of
lyso-platelet activating factor (lyso-PAF) and related compounds
(Fig. 2B, example 2 and Fig. S3). The identification of one mo-
lecular feature, lyso-PAF-C16, in these samples was previously
confirmed using a reference standard by ref. 12. This subnetwork is
particularly informative, because the three identified compounds
were networked to one another, showing that the mass shifts truly
correspond to a desaturation and elongation of a fatty acid chain,
m/z 2.018 (H2) andm/z 28.032 (C2H4). (iii) A subnetwork of ceramide-
related compounds (Fig. 2B, example 3 and Fig. S4) with mass shifts
of m/z 2.015 (H2), m/z 14.015 (CH2), and m/z 165.057 (C6H10O5;
glycosylation). A coral-associated ceramide was recently identified (16)
with one additional desaturation relative to the ceramide identified
here, and this newly identified ceramide has an extremely similar mass
(m/z 536.504) to the unknown feature (m/z 536.508) networked to the
ceramide here. The newly identified ceramide also differs in mass
from the identified ceramide by m/z 2.015, consistent with one fewer
saturation. (iv) A subnetwork of three unidentified molecules with
mass shifts ofm/z 28.032 (C2H4),m/z 28.033 (C2H4), andm/z 56.065
(C4H8) (Fig. 2B, example 4 and Fig. S5).

Differences in Mass Shift Profiles Between Types of Holobionts. To
determine how well MeMSChem profiling resolved each hol-
obiont type, Random Forests classification (17) was used to
generate an out-of-bag error (henceforth referred to as a “model
error”), which reflects the extent to which the model correctly
categorized every sample (i.e., whether Halimeda sp. samples
were correctly placed into the model’s Halimeda group). Random
Forests offers exceptional classification performance and is robust
to nonnormally distributed data and correlated predictors (18),
both of which were present in this dataset (Dataset S1).
The usefulness of recategorizing molecules by their mass shifts

was first evaluated based on the number of times that each mass
shift was observed (counts data described above). The model error
of the Random Forests model classifying holobiont types using the
counts data was 0.44, which indicates that 44% of the time samples
were assigned to the incorrect holobiont type. The resolution
gained from the observed counts data (i.e., actual data) was com-
pared with that from 1,000 permutations of the data in which pairs
were randomly binned and counted while keeping the original pro-
portions consistent (Dataset S2). The observed counts data out-
performed 95% of the randomly generated datasets, suggesting that
the counts of redundant mass shifts aided in differentiating between
holobiont types despite the relatively high model error (Fig. 3A).
Molecular abundance data were then incorporated into the

analysis and compared against the holobiont resolution gained

Fig. 2. Molecular network of the reef holobiontMS/MS dataset. (A) The global
molecular networks of MS/MS spectra from the coral reef holobiont
metabolomic dataset. Each node represents a unique or set of identical spectra
(i.e., molecular feature). Lines connecting the nodes represent their spectral
similarity, creating subnetworks that can be considered molecular families. Cir-
cles indicate zoomed-in regions of selected subnetworks shown in B. (B) Node
labels represent parent masses, and line labels between the connected nodes
represent the mass shift between related molecular features. Nodes with di-
amond shapes had a spectrum library match (e.g., lyso-PAF, as identified
by ref. 12) and are further labeled with the molecular names. The size of the
nodes indicates the sample frequency in which the spectra were found.

Hartmann et al. PNAS | October 31, 2017 | vol. 114 | no. 44 | 11687

BI
O
CH

EM
IS
TR

Y

D
ow

nl
oa

de
d 

at
 N

O
A

A
 C

E
N

T
R

A
L 

LI
B

R
A

R
Y

 o
n 

M
ar

ch
 6

, 2
02

0 

https://github.com/MolecularCartography/Optimus
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.201710248SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.201710248SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.201710248SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.1710248114.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.201710248SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.201710248SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.201710248SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.201710248SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.1710248114.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710248114/-/DCSupplemental/pnas.1710248114.sd02.pdf


from the counts data. When the summed abundances of each mass
shift among molecules present in all holobionts were considered,
the model error from the abundance data was 0.36 (Fig. 3B).
Therefore, incorporating feature abundance data improved the
accuracy of the model by 8% when resolving between holobiont
types. The value of summing feature abundances by mass shift was
also tested by comparing its accuracy with the models of 1,000
permutations of the data in which network pairs were randomly
binned and summed while keeping the original proportions con-
sistent (as was done for the counts data above). Among only the
molecular features present in all holobionts, summing of feature
abundances by mass shift resolved holobiont types better than
90% of the datasets generated from random summing of feature
abundances (Fig. 3B). Thus, binning abundance data by redundant
mass shifts categorizes molecules in a nonrandom manner. Mo-
lecular abundances binned by mass shifts also reflected differences
among holobiont types better than when holobionts were compared
with data that lack any feature abundance information (i.e., counts
of the number of mass shifts).

To determine whether mass shifts may reflect active sites of
molecular interconversions, as would be expected if a molecular
modification had occurred, the summed abundances were compared
with the differences in abundances between molecular pairs by mass
shift. This is akin to one molecule being the reactant and the other
the product. The model error of the differences in abundances data
was 0.34, demonstrating that organizing the data by the differences
in abundances slightly outperformed the summed abundances data
(model error, 34 and 36%, respectively; Fig. 3C). Compared with
1,000 random permutations of the actual data, the differences in
abundances data outperformed 86% of the random models.
Classification was further improved by incorporating the full

molecular dataset, and thus the molecules that were present in all
holobionts and the molecules that were only found in one or a few
holobionts. When these molecules were included, the model error
was 0.02. This reflects a 32% decrease in the model error relative to
when only molecules found in all holobionts were considered and
was nearly perfect in assigning samples to their correct holobiont
type. The real data outperformed 92% of the randomly generated
datasets (Fig. 3D and summarized in Fig. 3E). These results suggest

Fig. 3. Results of tests measuring the extent to which holobionts were resolved by MeMSChem profiling. (A) A visualization of the first two dimensions of a
Random Forests proximity matrix of the number of times that each redundant mass shift was identified (counts data). The color of the filled circle represents the
holobiont type of the sample, while the color of the halo around each circle corresponds to the holobiont type it was placed in by the Random Forests model (i.e.,
if the circle and halo are different colors, the model incorrectly categorized the sample). (B) An analogous representation of A for the summed abundances of
molecules grouped by the mass shifts they exhibit among only the molecular features present in all holobionts. (C) An analogous representation of A using the
difference in abundances of molecules “gaining” minus “losing” a mass, summed by the mass shift they exhibit among only the molecular features present in all
holobionts. (D) An analogous representation of A using the difference in abundances of molecules gaining minus losing a mass, summed by the mass shift they
exhibit among all of the molecules in the dataset. (E) A histogram of the permutation tests from randomly generated datasets used to determine how well
MeMSChem profiling resolves each holobiont type based on the model error. Letters above each line correspond to the model error of the actual data in the
figure panel matching that letter. The histograms reflect the model errors of 1,000 permutations of the actual data in which pairs were randomly binned while
keeping the original proportions consistent. This was repeated for the data in A to D, the distributions for which are shown in order and darkening color of
counts, summed abundances, differences in abundances in molecules present in all holobionts, and differences in abundances in the entire molecular dataset.

11688 | www.pnas.org/cgi/doi/10.1073/pnas.1710248114 Hartmann et al.
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that the highest level of holobiont resolution was achieved when (i)
molecular features were binned by the redundant mass shifts they
exhibited, (ii) molecular abundances were included as the differ-
ence in abundance between molecules in a network pair, and (iii)
molecules/pairs that were only found in certain holobionts were
included in addition to those molecules present in all holobionts.

Mass Shifts That Best Distinguish Each Holobiont Type. Among the
molecular features present in all holobionts, coral genera were
best differentiated from one another by mass shifts corresponding
to two carbons that were either saturated (m/z 28.032, C2H4 or
2*CH2) or unsaturated (m/z 26.016 C2H2) (P < 0.01 for both; Fig.
4A). The three coral genera exhibited distinct patterns between
these two mass shifts: Molecular features of Montipora exhibited
the addition of C2H4 and loss of C2H2, while Pocillopora exhibited
the opposite pattern. Porites-associated molecules did not gain or
lose either mass shift. Putative CH2 and CH2OOHmass shifts best
differentiated the noncoral holobionts (P < 0.01 for both; Fig. 4B).
Halimeda features predominantly gained CH2, as did turf algae,
the fungal mat, and all of the corals, though to a lesser degree than
Halimeda. Additions of CH2OOH were unique to Halimeda.
Corals were best differentiated from noncorals based on larger
losses of CO and H2, the latter suggesting a dehydrogenated state
perhaps due to higher concentrations of unsaturated lipids.

Discussion
MeMSChem profiling provides an approach to identify mass
shifts between related molecules and annotate them to known
chemical groups in complex metabolomes. Seven coral reef
holobiont types were well-resolved by MeMSChem profiling.

Even among molecular features detected in all holobionts,
mass shift profiles differed among holobiont types, suggesting
that each type of holobiont is modifying the same molecules in
different ways. The chemical differences between holobionts
was much more apparent when all molecules were considered
(i.e., molecules only produced by certain holobionts were also in-
corporated), suggesting that disparate mass shift patterns be-
tween holobionts play a role in generating molecular diversity in
this ecosystem. Shifts in the abundance of molecules exhibiting
each mass shift better resolved holobiont types than the number of
times each mass shift was detected. Together, these findings suggest
that holobionts differ more in their patterns of molecular abun-
dance changes (akin to gene expression) than in the diversity of
mass shifts they can carry out (akin to genomic diversity).

Mass Shifts Associated with Holobionts Reflect Differences in Molecular
Diversity. By focusing on the differences in mass shift profiles
between related molecules, MeMSChem profiling expands
metabolomic analysis beyond molecular matches in reference
libraries to systemic insights into holobiont biochemistry. If annotated
mass shifts reflect single types or classes of molecular modifi-
cations catalyzed by enzymes, then disparate mass shift patterns
among holobionts may arise for multiple reasons. Holobionts for
which the hosts have large genomic differences, such as stony
corals and turf algae, may merely possess different biochemical
pathways. Among closely related holobiont types such as the three
stony coral genera, the distinct patterns of molecular relatedness
may arise from differential expression of shared genes. However,
the largest disparity among coral holobionts was found by including
the mass shifts of molecules that are unique to each holobiont. This
suggests that the mass shifts of holobiont-specific molecules largely
generate each coral holobiont’s unique biochemical profile despite
the high degree of taxonomic relatedness among these corals.
The mass shifts that differed among holobiont types included

differences putatively assigned to single- and double-bonded
carbon and oxygen, likely among phospholipids and their deriv-
atives based upon the molecules identified in this dataset pre-
viously (12) and in the current analyses. These data show the
expected lower saturation state of corals relative to algae (19, 20)
based on the mass shift of m/z 2.016 putatively assigned to H2.
Greater fatty acid saturation flexibility can mitigate the damage
of elevated temperatures that lead to bleaching in corals (21),
suggesting that corals benefit from a higher degree of saturation
flexibility and homeoviscous adaptation potential relative to the
noncorals studied here. While desaturations in coral molecules
generate double bonds between carbons, the shift toward gaining
H2O in coral samples suggests these double bonds may be
replaced by hydroxyl groups, either directly or through shifts in
the relative abundances of molecules. Hydration of phospho-
lipids can lead to conformational changes that alter membrane
surface potential and signaling activity (22), suggesting that the
higher abundance of hydroxyl groups in corals reflects systemic
changes in cell–cell interactions and cellular signaling pathways.

Applications of MeMSChem Profiling. MeMSChem profiling offers
a way to analyze existing LC-MS/MS datasets and provides an
approach for identifying system-wide changes in small mole-
cules across metabolomes. Here we analyzed a dataset col-
lected from one of the most remote places in the world. Other
researchers may have LC-MS/MS datasets that, like this data-
set, cannot be resampled or recreated. Therefore, offering a
way to gain information in silico is an attractive proposition for
many working with untargeted metabolomic data.
While MeMSChem profiling was applied here to uncover

similarities and differences among types of holobionts, it opens
doors to answering many more questions. Rather than comparing
known groups, MeMSChem profiling may be used to uncover
clusters in seemingly homogeneous populations (e.g., individuals of

Fig. 4. Annotated mass shifts that best differentiated each holobiont type.
(A) The annotated mass shifts that best distinguish between coral genera
based on the mean decrease accuracy of a supervised Random Forests model.
(B) The annotated mass shifts that best distinguish between the noncoral
holobiont types. (C) The annotated mass shifts that best distinguish the coral
holobionts from the noncoral holobionts. Bars represent the 95% confidence
interval around the mean.

Hartmann et al. PNAS | October 31, 2017 | vol. 114 | no. 44 | 11689

BI
O
CH

EM
IS
TR

Y

D
ow

nl
oa

de
d 

at
 N

O
A

A
 C

E
N

T
R

A
L 

LI
B

R
A

R
Y

 o
n 

M
ar

ch
 6

, 2
02

0 



a coral species in a common environment, human patients suf-
fering from the same disease, cohorts of offspring growing in a
shared location). Known mass shifts can also be searched for and
quantified, which may be particularly useful when looking for a
ubiquitous process such as antioxidant activity.
If molecules of interest are identified, the mass shifts around

them may be used to detect putative sites of known modifications
or previously unidentified biochemistries. Annotated and unknown
mass shifts will require further verification with targeted analyses,
such as spiking samples with authentic standards, networking, and
examining the mass shifts associated with these standards. Once
putative modifications are identified, genetics and molecular biol-
ogy approaches can be used to confirm or identify the responsible
enzyme(s). Such an approach may be particularly useful for tracking
molecular changes in time-series samples, a primary need for cli-
nicians (23). Future applications of MeMSChem profiling may also
employ a more precise binning approach, taking into account the
smaller relative variance at higher masses, changes in MS accuracy
across parent masses, and precursor differences. Through this pro-
cess, the continued application of MeMSChem profiling and the
data it generates will produce a wealth of previously uncaptured
information from data-rich untargeted metabolomic datasets.

Conclusions
Untargeted metabolomics continues to grow as a tool to examine
the complex physiologies of life on Earth. We applied an approach
that analyzes untargeted metabolomic data based on the chemical
relationships between molecules. An analysis of seven coral reef
holobionts demonstrated that the relationships between molecules
are diverse and distinct between holobiont types. That different
types of holobionts had unique MeMSChem profiles despite high
genomic similarity suggests that each possesses physiological capa-
bilities that are not easily identified through traditional genomic
approaches. The distinct molecular repertoires identified in each
holobiont, coupled with the wide diversity of holobiont types on
coral reefs, offer insights into why this ecosystem is an abundant
source of chemical diversity.

Materials and Methods
LC-MS/MS Data Collection and Molecular Networking. Samples of seven types
of holobionts (hosts and associated viral and microbial communities) in-
cluding corals, algae, and a fungal mat were extracted in 70% methanol and
analyzed with LC-MS/MS [as described in Quinn et al. (12); see SI Materials

and Methods for data acquisition details]. Files were submitted for molecular
network analysis using the online workflow in GNPS (5) (Fig. S1), which com-
pares spectral fragmentation patterns and networks-related molecules (Fig. S1).
Molecular spectra were also compared against reference libraries of known
molecules in GNPS. Details of the networking parameters can be found in SI
Materials and Methods.

Identifying Aggregations of Mass Shifts in Network Pairs. Across all pairs, the
difference inmass between two networkedmolecular features (referred to as
“network pair mass shifts”) was searched for aggregations around precise
masses. Criteria for identifying aggregations (i.e., redundancies) were established
using the similar masses of CO and C2H4 (m/z 27.995 and m/z 28.031, respec-
tively; Fig. S6; see SI Materials and Methods for details). The network pairs
involved in aggregations were binned by mass shift and counted per sample
(Counts dataset in Dataset S1). All molecular features involved in redundant
mass shifts were then quantified using the Optimus workflow (https://github.
com/MolecularCartography/Optimus). Optimus was used to quantify features
involved in redundant mass shifts that were present in all files/holobionts,
features involved in redundant mass shifts that were present in each holobiont
type, and all molecular features, including those that were not involved in
redundant mass shifts (for normalization of the two former datasets). Molecular
abundance data were then used to quantify the molecules exhibiting each mass
shift and to quantify the prevailing direction of each mass shift (gaining or los-
ing) in each sample (see Results and SI Materials and Methods for more details).

Data Analysis Using Random Forests.MeMSChem data were analyzed using the
ensemblemachine learning algorithmRandom Forests (17). The seven holobiont
types were used as classifiers, and MeMSChem data were used as predictors.
The out-of-bag error (referred to as a model error) indicated how well each
holobiont type was resolved by the Random Forests model. Permutation tests
were used to determine how well the MeMSChem data differentiated the
seven holobiont types. These tests were carried out by comparing the model
error of the actual data with a distribution of model errors generated from
1,000 randomizations of the data (see SI Materials and Methods for more de-
tails). The relative importance of each mass shift in differentiating between
holobiont types was determined using the Random Forests mean decrease
accuracy score and feature importance score (for each holobiont type).
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